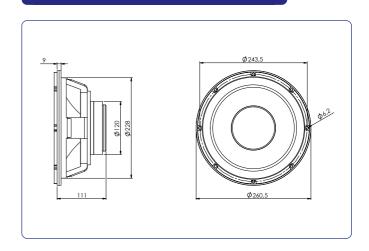


10BR60V2 **LOW FREQUENCY TRANSDUCER**

KEY FEATURES


- 100 W_{RMS} program handling
- Sensitivity: 90,6 dB @ 2,83 V @ 1 m
- 2" voice coil.
- Extended controlled displacement: X_{max} ± 6,5 mm
- Low frequency driver
- Ferrite magnet

TECHNICAL SPECIFICATIONS

Nominal diameter		250 mm	10 in
Rated impedance			8 Ω
Minimum impedance			8,3 Ω
Power capacity*		100	W _{RMS}
Program power			200 W
Sensitivity	90,6 dB	2,83v @ 1	m @ 2π
Frequency range		30 - 5	.000 Hz
Recom. enclosure vol.	30 / 10	0 I 1,06 /	3,53 ft ³
Voice coil diameter		51,7 mm	2 in
Magnetic assembly weight		2,75 kg	6,06 lb
BI factor		1	0,6 N/A
Moving mass		0	,048 kg
Voice coil length			16 mm
Air gap height			7 mm
X _{damage} (peak to peak)			31 mm

DIMENSION DRAWINGS

THIELE-SMALL PARAMETERS**

Resonant frequency, f _s	31 Hz
D.C. Voice coil resistance, R _e	6,5 Ω
Mechanical Quality Factor, Q _{ms}	3,29
Electrical Quality Factor, Q _{es}	0,55
Total Quality Factor, Q _{ts}	0,47
Equivalent Air Volume to C _{ms} , V _{as}	108,2 I
Mechanical Compliance, C _{ms}	536 μm / N
Mechanical Resistance, R _{ms}	2,89 kg / s
Efficiency, η ₀	0,57 %
Effective Surface Area, S _d	0,038 m ²
Maximum Displacement, X _{max} ***	6,5 mm
Displacement Volume, V _d	240 cm ³
Voice Coil Inductance, Le @ 1 kHz	1,5 mH

MOUNTING INFORMATION

Overall diameter Bolt circle diameter	260,5 mm 243,5 mm	10,26 in 9,59 in
Baffle cutout diameter:		
- Front mount	228 mm	8,98 in
- Rear mount	232 mm	9,13 in
Depth	120 mm	4,72 in
Volume displaced by driver	2,5 I	0.08 ft^3
Net weight	2,87 kg	6,33 lb

3,25 kg

beyma //

7,17 lb

Notes:

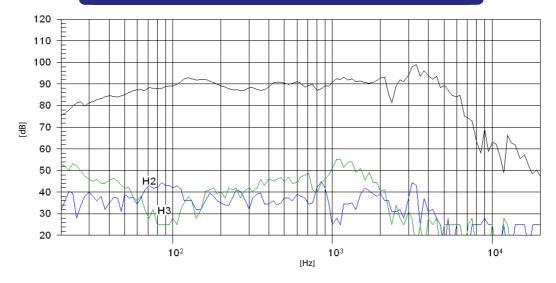
Shipping weight

- * The power capaticty is determined according to AES2-1984 (r2003) standard. Program power is defined as the transducer's ability to handle normal music program material.
- ** T-S parameters are measured after an exercise period using a preconditioning power test. The measurements are carried out with a velocity-current laser transducer and will reflect the long term parameters (once the loudspeaker has been working for a short period of time).
- *** The X_{max} is calculated as $(L_{VC}$ $H_{ag})/2$ + $(H_{ag}/3,5)$, where L_{VC} is the voice coil length and H_{ag} is the air gap height.

45 40

10BR60V2

LOW FREQUENCY TRANSDUCER


104

FREE AIR IMPEDANCE CURVE

FREQUENCY RESPONSE AND DISTORTION

10³ [Hz]

10

Note: On axis frequency response measured with loudspeaker standing on infinite baffle in anechoic chamber, 1W @ 1m

beyma //

Polígono Industrial Moncada II • C/. Pont Sec, 1c • 46113 MONCADA - Valencia (Spain)

• Tel.: (34) 96 130 13 75 • Fax: (34) 96 130 15 07 • http://www.beyma.com • E-mail: beyma@beyma.com •